

Dynamic Spatio-Temporal Specialization Learning for Fine-Grained Action Recognition

Tianjiao Li^{1*}, Lin Geng Foo^{1*}, Qiuhong Ke², Hossein Rahmani³, Anran Wang⁴, Jinghua Wang⁵, and Jun Liu¹

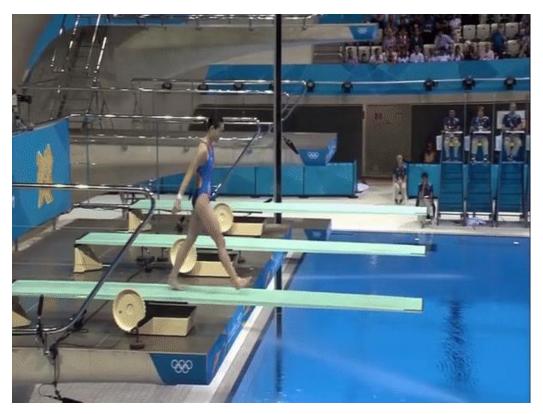
¹ ISTD Pillar, Singapore University of Technology and Design

² Department of Data Science & AI, Monash University

³ School of Computing and Communications, Lancaster University


⁴ ByteDance

³ School of Computer Science and Technology, Harbin Institute of Technology


* Equal Contribution

Fine-Grained Action Recognition

['Forward', '15som', 'NoTwis', 'PIKE']

['Reverse', '15som', '25Twis', 'FREE']

GIFs from Diving48 Dataset

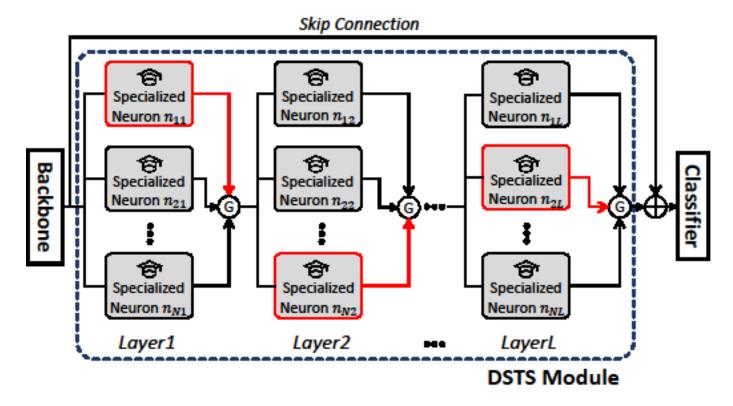
Spatial vs Temporal Fine-grained Differences

Pouring something into something

Pouring something into something until it overflows

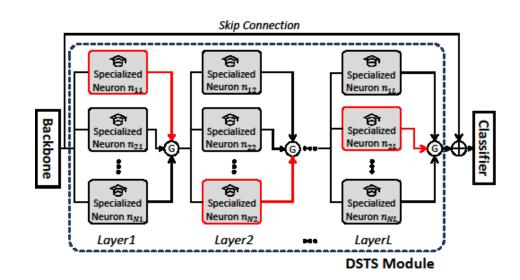
Pulling something from right to left

Pulling something from left to right

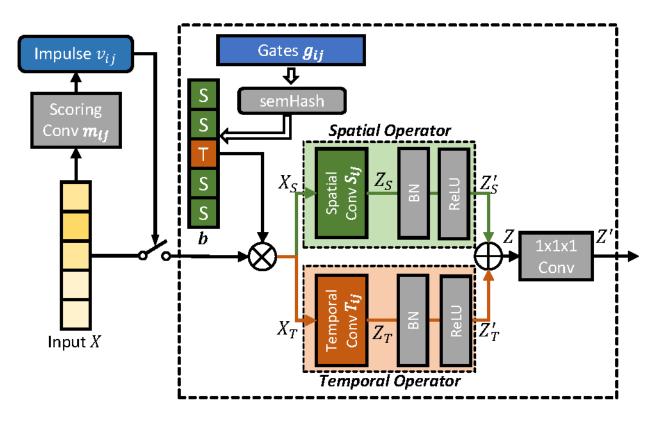


Fine-grained differences can exist in spatial or temporal aspects. A greater emphasis on the important aspect w.r.t the input video can improve performance

Overview: We design a DSTS module to handle fine-grained differences.

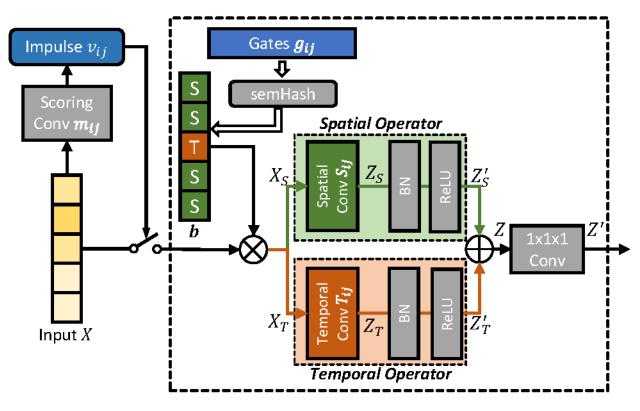

There are **L layers** within the DSTS module, each comprising **N specialized neurons**.

In the forward pass, specialized neurons are dynamically activated **based on the input**.



A **Synapse Mechanism** dynamically activates each specialized neuron only on a subset of samples that are highly similar, such that only fine-grained differences exist between them.

During training, in order to distinguish among that subset of similar samples, the loss will push the specialized neurons to **focus on exploiting the fine-grained differences** between them.


We also design a **Spatio-Temporal Specialization** method that additionally provides *specialized neurons* with *spatial* or *temporal* specializations, allowing them to have to higher sensitivity towards the fine-grained differences in those aspects.

Specialized neuron with Spatio-Temporal Specialization

Highlights of the Design

- Each specialized neuron is designed with a Spatial Operator and a Temporal Operator in each channel
- *Gate* parameters in each channel control the choice of operator, and are optimized during training, adapting the architecture of the *specialized neuron*
- The set of *neurons* will have diversified architectures, which collectively are capable of handling a large variety of *spatial* and *temporal* fine-grained differences



Specialized neuron with Spatio-Temporal Specialization

Upstream-Downstream Learning

Motivations of UDL

- Our Upstream-Downstream Learning (UDL) algorithm better optimizes the model parameters involved in making dynamic decisions.
- This is because upstream parameters that make dynamic decisions and downstream parameters that process input, are jointly trained during our end-to-end training, which can be challenging as upstream parameters themselves also affect the training of downstream parameters.

Experiments

Results on SSv2

Results on Diving48

Method	Type	Top-1	Top-5
SlowFast [7]	С	63.1	87.6
TPN [41]	\mathbf{C}	64.7	88.1
ViViT-L [1]	Т	65.4	89.8
TSM (Two-stream) [19]	\mathbf{C}	66.6	91.3
MViT-B [5]	Т	67.7	90.9
Swin-B [20]	Т	69.6	92.7
TPN w/ DSTS	С	67.2	89.2
Swin-B w/ DSTS	Т	71.8	93.7

Method	Type	Top-1	Class-wise Acc
[I3D [3]	С	48.3	33.2
TSM (Two-stream) [19]	\mathbf{C}	52.5	32.7
GST [22]	\mathbf{C}	78.9	69.5
TQN [45]	Т	81.8	74.5
Swin-B [20]	Т	80.5	69.7
TPN [41]	C	86.2	76.0
Swin-B w/ DSTS	Т	83.0	71.5
TPN w/ DSTS	\mathbf{C}	88.4	78.2

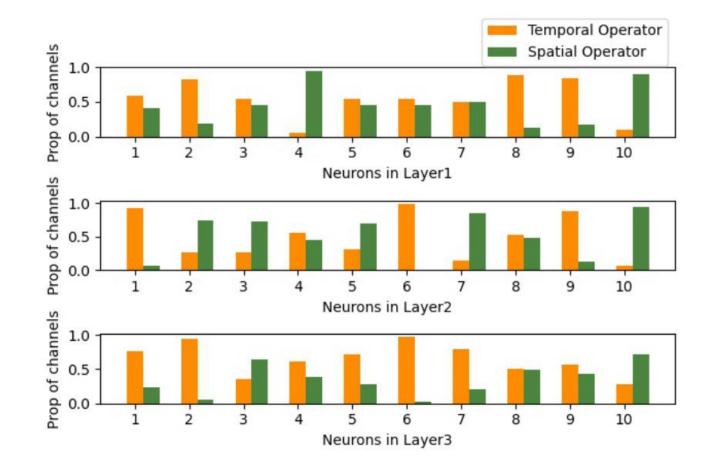
Ablations on Diving48

Spatio-Temporal Specialization

Method	Top-1	Class-wise Acc
DSTS w/o STS	87.2	76.5
DSTS w/o Gates	87.3	76.7
DSTS w/ STS	88.4	78.2

Synapse Mechanism

Method	Top-1	Class-wise Acc	Model Size
Baseline TPN	86.2	76.0	63M
w/o Synapse Mechanism	86.5	76.4	$75\mathrm{M}$
w/ Synapse Mechanism	88.4	78.2	$75\mathrm{M}$


Upstream-Downstream Learning

Method	Top-1	Class-wise Acc
DSTS w/o UDL	87.4	76.7
DSTS w/ UDL		78.2

Impact of N and L

N Top-1	Class-wise Acc	L	Top-1	Class-wise Acc
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$76.2 \\ 78.2 \\ 78.2$	$\frac{1}{3}$	87.5 88.4 88.2	$76.8 \\ 78.2 \\ 78.2$

Visualization of Spatio-Temporal Specialization

Thank You!