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Fine-Grained Action Recognition

['Forward', '15som’, 'NoTwis', 'PIKE'] ['Reverse’, '15som’, '25Twis', 'FREE']
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GIFs from Diving48 Dataset



Spatial vs Temporal Fine-grained Differences

Pouring something
into something

Pouring something
into something
until it overflows
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Pulling something |
from right to left

Pulling something
from left to right

Fine-grained
differences can exist
in spatial or temporal
aspects. A greater
emphasis on the
iImportant aspect w.r.t
the input video can
improve performance



Dynamic Spatio-Temporal Specialization

Overview: We design a DSTS module
to handle fine-grained differences.

There are L layers within the DSTS
module, each comprising N
specialized neurons.

In the forward pass, specialized
neurons are dynamically activated
based on the input.
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Dynamic Spatio-Temporal Specialization

A Synapse Mechanism dynamically activates each
specialized neuron only on a subset of samples that
are highly similar, such that only fine-grained
differences exist between them.

During training, in order to distinguish

among that subset of similar samples, the loss will
push the specialized neurons to focus on
exploiting the fine-grained differences between
them.
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Dynamic Spatio-Temporal Specialization

-

We also design a Spatio-Temporal
Specialization method that additionally
provides specialized neurons with spatial
or temporal specializations, allowing
them to have to higher sensitivity o
towards the fine-grained differences in
those aspects. Input X
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Specialized neuron with Spatio-Temporal Specialization
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Dynamic Spatio-Temporal Specialization

Highlights of the Design
* Each specialized neuron is designed with a

Spatial Operator and a Temporal Operator in m
each channel

 (@Gate parameters in each channel control the T
choice of operator, and are optimized during
training, adapting the architecture of the
specialized neuron C

Temporal
Conv Tj;

* The set of neurons will have diversified
architectures, which collectively are capable
of handling a large variety of spatial and
temporal fine-grained differences

Input X

Specialized neuron with Spatio-Temporal Specialization
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Upstream-Downstream Learning

Motivations of UDL

* Our Upstream-Downstream Learning
(UDL) algorithm better optimizes the g
model parameters involved in making
dynamic decisions.

* This is because upstream parameters that
make dynamic decisions and downstream
parameters that process input, are jointly
trained during our end-to-end training,
which can be challenging as upstream
parameters themselves also affect the
training of downstream parameters.

Input X




Experiments

Results on SSv2

Results on Diving48

Method Type|Top-1|Top-5
SlowFast [7] C | 63.1 | 87.6
TPN [11] C 64.7 | 88.1
ViViT-L [1] T 65.4 | 89.8
TSM (Two-stream) [19]| C | 66.6 | 91.3
MViT-B [7] T 67.7 | 90.9
Swin-B [20)] T 69.6 | 92.7
TPN w/ DSTS ) 67.2 | 89.2
Swin-B w/ DSTS T 71.8 | 93.7

Method Type|Top-1|Class-wise Acc
I3D [3] C | 48.3 33.2
TSM (Two-stream) [19]| C | 52.5 32.7
GST [22] C | 78.9 69.5
TQN [15] T | 81.8 74.5
Swin-B [20)] T | 80.5 69.7
TPN [11] C | 86.2 76.0
Swin-B w/ DSTS T | 83.0 71.5
TPN w/ DSTS > | 88.4 78.2
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Ablations on Diving48

Spatio-Temporal Specialization Synapse Mechanism

Moethod Top-1|Class-wise Aco Method Top-1|Class-wise Acc|Model Size
DSTS w/o STS | 87.2 76.5 Baseline TPN 86.2 76.0 63M
DSTS w/o Gates| 87.3 76.7 w/o Synapse Mechanism| 86.5 76.4 75M
DSTS w/ STS 88.41 78.2 w/ Synapse Mechanism | 88.4 78.2 75M

_ Impact of N and L
Upstream-Downstream Learning

_ : N | Top-1|Class-wise Accl||L|Top-1|Class-wise Acc
Method Top-1|Class-wise Acc F 13 3 =G0 11375 =68
DSTS w/o UDL| 87.4 T6.T 10| 88.4 78.2 3| 88.4 78.2
DSTS w/ UDL | 88.4 TH.2 15| 88.3 78.2 51 88.2 78.2
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Visualization of Spatio-Temporal Specialization
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