

ERA: Expert Retrieval and Assembly for Early Action Prediction

Lin Geng Foo^{1*}, Tianjiao Li^{1*}, Hossein Rahmani², Qiuhong Ke³, and Jun Liu¹

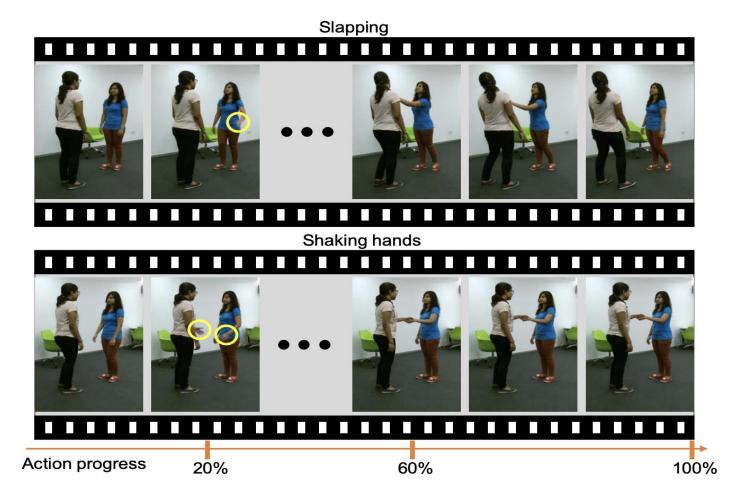
¹ ISTD Pillar, Singapore University of Technology and Design

² School of Computing and Communications, Lancaster University

³ Department of Data Science & AI, Monash University

Early Action Prediction

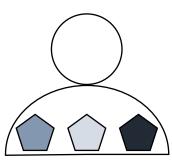
 Early Action Prediction is where we try to recognize the human action at the very early stage.



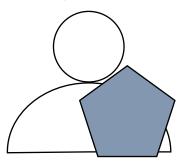
At the beginning stages of actions, there are often only subtle cues for action recognition.

Dynamic Networks for Expert Specialization

Non-Expert



Expert 1

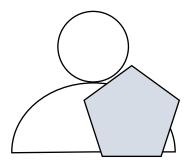


Slapping

Shaking Hands

Pointing

Expert 2

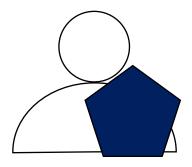


Jumping

Hopping

Squatting

Expert 3



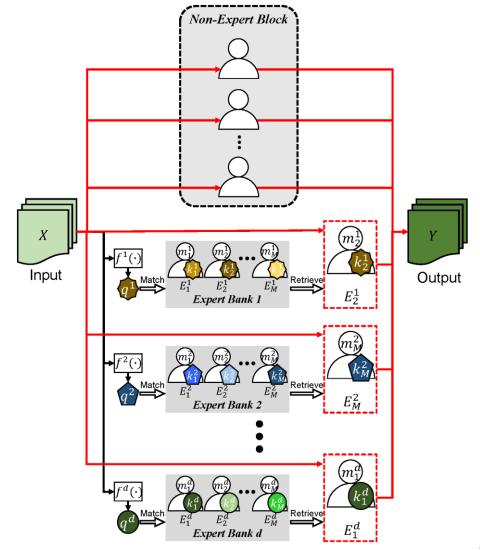
Eat meal

Drink water

Expert Retrieval and Assembly (ERA)

We design a new module that can replace convolutional layers in Convolutional Neural Networks (CNNs).

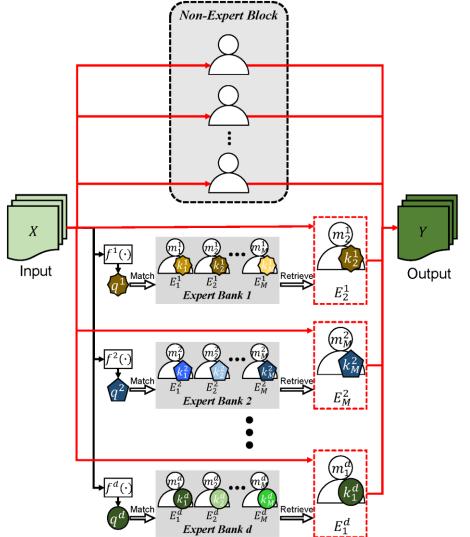
Our module retrieves and assembles a set of experts most specialized at using discriminative subtle differences, to distinguish an input sample from other highly similar samples.



ERA Module Design

Highlights of the Design

- Both non-experts and experts are used.
 Each expert/non-expert outputs a channel
- Conditioned on the input, an expert is retrieved from each Expert Bank, while other experts are not used
- Retrieval is done using Key-Query
 Mechanism to select similar experts for
 similar inputs, such that experts specialize
 in distinguishing using subtle cues

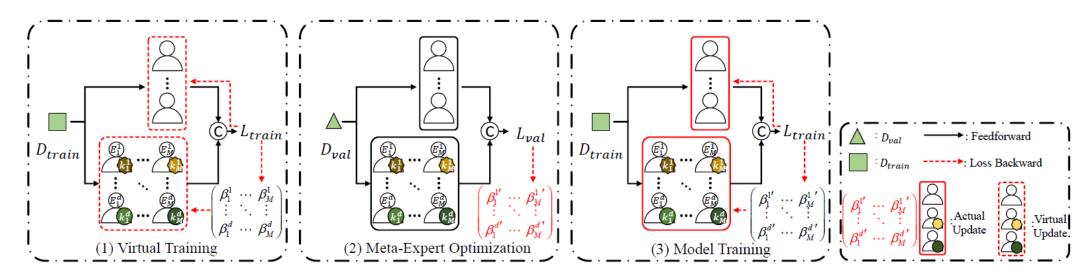


Expert Learning Rate Optimization (ELRO)

Motivation for New Training Scheme

Moreover, it is non-trivial to balance the training among the many different *experts* in the module.

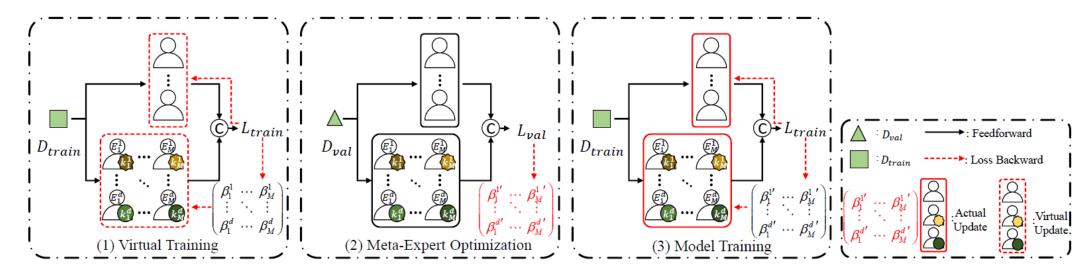
For instance, as some subtle cues may be more common, a few *experts* are selected more often and might be better trained.



Expert Learning Rate Optimization (ELRO)

Thus, we introduce **individual expert learning rates** for more balanced training of our experts. **ELRO is implemented** during the training of the *experts*, which tunes their individual learning rates together with the rest of the model parameters.

Overall, ELRO is a 3-step procedure shown below:



Experiments

Table 1: Results on NTU60 and SYSU

Methods	Observation Ratios on NTU60						Observation Ratios on SYSU						
	20%	40%	60%	80%	100%	AUC	20%	40%	60%	80%	100%	AUC	
Jain $et \ al. \ [18]$	7.07	18.98	44.55	63.84	71.09	37.38	31.61	53.37	68.71	73.96	75.53	57.23	
Ke $et al. [21]$	8.34	26.97	56.78	75.13	80.43	45.63	26.76	52.86	72.32	79.40	80.71	58.89	
Kong et al. $[26]$	-	-	-	-	-	-	51.75	58.83	67.17	73.83	74.67	61.33	
Ma $et \ al. \ [34]$	_	-	-	-	-	-	57.08	71.25	75.42	77.50	76.67	67.85	
Weng $et \ al. \ [53]$	35.56	54.63	67.08	72.91	75.53	57.51	_	-	-	-	-	-	
Aliakbarian et al.[40]	27.41	59.26	72.43	78.10	79.09	59.98	56.11	71.01	78.39	80.31	78.50	69.12	
Hu $et al. [16]$	_	-	-	-	-	-	56.67	75.42	80.42	82.50	79.58	71.25	
Wang et al. $[52]$	35.85	58.45	73.86	80.06	82.01	60.97	63.33	75.00	81.67	86.25	87.92	74.31	
Pang $et \ al. \ [38]$	33.30	56.94	74.50	80.51	81.54	61.07	_	-	-	-	-	-	
Tran $et \ al. \ [49]$	24.60	57.70	76.90	85.70	88.10	62.80	-	-	-	-	-	-	
Ke $et \ al. \ [22]$	32.12	63.82	77.02	82.45	83.19	64.22	58.81	74.21	82.18	84.42	83.14	72.55	
HARD-Net [29]	42.39	72.24	82.99	86.75	87.54	70.56	_	-	-	-	-	_	
Baseline	38.09	66.36	78.67	83.29	84.10	66.43	60.71	73.04	77.81	83.88	84.32	72.20	
ERA-Net w/o ELRO	43.94	73.23	84.53	87.61	87.97	71.62	63.50	80.82	82.70	86.33	87.10	75.78	
ERA-Net	53.98	74.34	85.03	88.35	88.45	73.87	65.30	81.27	85.67	89.17	89.38	77.73	

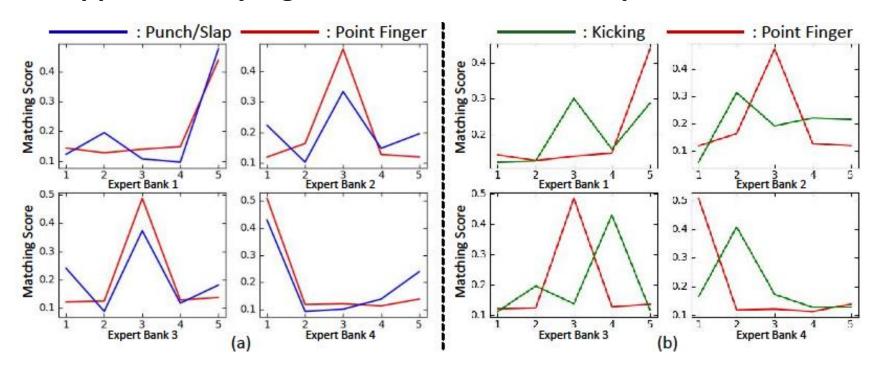
Experiments

Table 2: Results on NTU120 and UCF101

Methods	Observation Ratios on NTU120						Observation Ratios on UCF101					
	20%	40%	60%	80%	100%	AUC	10%	30%	50%	70%	90%	AUC
MSRNN [16]	_	-	-	-	-	_	68.01	88.71	89.25	89.92	90.23	80.89
Wu et al. [56]	-	-	-	-	-	-	80.24	84.55	86.28	87.53	88.24	80.57
Wu et al. $[57]$	-	-	-	-	-	-	82.36	88.97	91.32	92.41	93.02	84.66
Wang <i>et al.</i> [54]	-	-	-	-	-	-	83.32	88.92	90.85	91.28	91.31	89.64
Baseline	23.14	32.49	59.07	75.61	81.18	50.03	82.88	89.02	89.64	91.12	91.96	89.30
ERA-Net w/o ELRO	29.60	43.45	65.14	78.03	82.01	55.52	86.99	91.49	93.63	94.24	94.40	92.51
ERA-Net	31.73	45.67	67.08	78.84	82.43	57.02	89.14	92.39	94.29	95.45	95.72	93.64

Qualitative Validation

Supplementary Figure 1: Visualization of experts selection.



Thank You!